连景在黑板上落笔,一行行数学符号出现在黑板上。
他写得很用力,背后的肩胛骨微微凸起,在略显宽松的衬衫下勾勒出清瘦的骨感轮廓。
粉笔在黑板上擦出“沙沙”的声响,那些看起来枯燥的数学字符在黑板上生长成有序的脉络,带着一种近乎执拗的严谨和专注。
[我们直播间有大神能看懂吗?]
[我现在只想跪地说666,光是那些复杂的数学符号,我写都写不明白。]
[天哪,我真想一秒学会数学!]
然而这样的弹幕还未维持多久,和平的表象很快就被撕破。
[上面的别吹了,你们看不懂这些不代表别人看不懂。]
[就是,至少那些外国人比较淡定,这意味着什么,意味着连景也就那样。]
[没看到那些外国人还是很骄傲吗?]
卢飞关掉手机直播间,目光落在面前的黑板上。他竭尽全力想要去看懂连景书写的那些内容,但他的大脑就像是纸糊的一样,根本运转不开来。
卢飞只能戳了身旁的室友。
他将希望寄托在室友身上。相较于他来说,他室友的成绩在他们专业里一直名列前茅!
他应该能看懂吧?
然而被他戳了的室友此刻脸色有些难看,他对上卢飞的目光轻轻摇了摇头。
他原本以为自己的能力很不错,很多专业课老师都对他很看好。
如果不出意外的话,他经过大学四年的学习后就会保研继续深造。
他一直以为的自己是个天才,直到他遇到了连景。
他以为的天赋在连景面前一文不值。
“别戳了,我没看懂连景在写什么?”
卢飞根本就没有察觉到自己室友那一闪而过的情绪,在听到室友这句话时,卢飞的眼睛微微睁大:
“你都没看懂啊,那就说明连景比我想象中的要厉害。”
卢飞对连景有充足的信心,毕竟让他去瞎编,他根本编不出来这一些内容。
卢飞的身后坐着的正是卡斯特等人,他们正抱着胸靠在椅子上看着连景书写。
在听到卢飞和他室友的讨论声时,卡斯特发出了一道轻笑声:
“你们在高兴什么?”
“你们的极具潜力的青年数学家此刻正在概述新原论文里的内容。”
是的,连景现在正在概述新原论文上的内容。
新原的思路其实很简单,他将a、b、c猜想的证明转化为一个椭圆曲线的问题,通过一系列复杂变化,使a、b、c等式都对应一条椭圆曲线,经过数论、几何、微积分等领域的相关联系,将abc猜想最终变成一个与椭圆曲线有关的特定不等式。
而在新原3。12的论文中,就是对这个新的不等式进行证明,如果该证明成立,则abc猜想成立。
连景在看了新原600页的论文后,便发现一个关键问题。
在新原长达600页的证明体系中,关键不等式的证明起到了至关重要的作用。
但是连景当时在看那些证明过程的时候,就发现证明过程中存在一定的逻辑相悖的问题。
以他当时的能力,能察觉到问题,却找不出问题所在。
而如今连景经历过模拟器九年的不断学习和提升,在他数学属性逼近S的那一瞬间,他总算找到了先前他觉得不对劲的地方。
在新原的证明过程中,关于j^2系数的取舍存在不可逾越的问题。
具体而言,在证明该不等式时,需要比较两个实数集合,而这两个集合又会变换成6个不同的实数集合中的部分元素组成的环的一部分。
为了达到证明的目的,就需要理解不同集合的测度之间的关系。
在新原的论述中,各种测度标准彼此并不相融。也因此,在验证的过程中,会遇到一个新的测度标准。
而这个测度标准与其他测度标准存在明显差异,这就导致整个逻辑存在明显断裂。
这样一个看似简短、能在两百字内概括的一个逻辑,连景需要一层层去剖析、去解析,才能证明这一点。
最开始的时候,卡斯特等人对连景书写的内容不屑一顾,然而等他换一种颜色的粉笔在新原教授原本的内容上进行批注时,他们的脸色在这一瞬间变得难看了起来。
“怎么感觉……连景圈的地方确实有问题?”坐在卡斯特旁边的罗欧微微皱了皱眉。
卡斯特没有回答,他的神情严肃,目光在连景面前的黑板上,他企图在这上面找到一点错误之处。
但偏偏、没有……根本没有!
连景面前的四块黑板上面都被写满了数学理论和公式,上面的逻辑和过程格外完美。
他也根本找不到任何角度进行辩驳。
卡斯特的神色变得有些难看。
他先前对连景的挑衅在这一刻变得格外搞笑。而此刻直播间的弹幕也在这一刻发生了一系列的变化。